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ON THE STABILITY CONDITIONS FOR STATIONARY STATES 

REGIONS EXTENDED IN ONE DIRECTION* 

A.G. KULIICOVSKII 

OR FLOWS IN 

A generalization of the asymptotic condition of stability f/l/) for 
stationary states or flows in the segment Oft<L, for large L is given. 
Unlike /l/, the existence inside this segment of points where the boundary 
conditions are also specified, are allowed. No constraints are imposed on 
the boundary conditions with the exception of those resulting from the 
requirement of accuracy. Unlike the case in /l/, these boundary conditions 
can be degenerate, that is the vanishing of any number of reflection 
coefficients or refractive indices of various disturbances are admissible, 
In addition, a state or a flow can slowiy change whenx changes,i.e. it 
can depend on I L. In this case the distrubances may be reflected not 
only from points where the boundary conditions are specified, but alsc 
they can be affected by internal reflections from xeflection points, or 
the points of intersection of the real x-axis with the Stokes lines 
(see, for example, /2/) in the complex plane. 

It is shown that if we exclude the instability created by the boundary 
conditions set at one of the points ('boundary' instability), then, in 
general, the instability condition would be the existence, for Imo>O, 

of a cyclic sequence of waves which depend on time as e-'". , and which 
are converted from one into another, the sequence being such that the 
product of the space amplification (or attenuation) coefficients of these 
waves, and their mutual conversion coefficient on reflection or refraction 
should be unity. As applied to weak non-uniform states and flows, the 
above condition can be regarded as an extension to the arbitrary boilndary 
conditions of the 'quantization conditions' obtained when there are only 
internal reflections from the Stokes lines, or from the points of rotation 
(see /2-7/l. 

1. Consider the behaviour of the distrubance E cf an arbitrary state of flow which depend 
on f* = rL in the section 0<-2< L for large L. We assume that at the point z -= X3 (a = 
(1.1. . . ,utl).F= Cl. A-i’ = L distant from each o+Aer a distance of order L, are the bcundary 
conditions which connect the disturbances and their derivatives at these points are specified. 

We shall assume that in each of the segments IS'-. .yD-'] the disturbances are described by 
a linear system of equations for which we assume the fcllowing. Any solution'of this system 

u," (I. t} on the segment j.xri. xa-1], which depends on time as e-'"". is presented in the form of 

a linear combination of the independent solutions 

u "(Q. J)= x;$~;~_ (<cl. ~*)(l - R;,)PxP :i 1 k;[.!~. r*)dr: (1.1) 
pi 

(R_Z = Et,,,* (w. z*. L) - i!. L 4 02~ 

The functior. ~i',,,~ (ti.~*;satisfies the CCditiGr. 1" j u.:: ::i'. G u.",p (1 . Here ii%(,), .r*,! are 
> 

the roots cf the disperslsr. equation 

oa (w. ir. r*) = 0 (1.2, 

in which the slow variable I* appears as a parameter. We will assume that the values of &' 
which satisfy this eqaaticr., form the finite set k,n (0.x*) (m = 1.2....,A'a), or for some other 

reasons, we can limit ourselves inthe sum (1.1) to nla terms only. Eq.(l.li corresponds to 
the WKB approximation (/2,/j. 

Suppose that the condition of correctness (see /S/) (or of "being evolutionary") of a 

system of equations is satisfied. This condition stipulates the existence of a constant M 

such that for Im w > 31 for ail I* and a the imaginary parts of all k,,,” are non-zero. Thi c 

means #at for 1~1 o>fil the change of the sign of Im k,= can occur only when k,P Passes 
through infinity. Let us assiune that such passage can occur only at certain isolated Points 
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x , and at those points we can stipulate certain effective boundary conditions which link 
the solutions situated in different directions from these points. Then, assuming that these 
points are included among the points X" we obtain that fox lm o > M, the quantities Im k,” do 
not change sign on any of the segments [Xa,Xu-'1. 

Let us introduce numbers Sn such that for Im o>& 

Im kj@ (a, .z*) > 0 (1 = 1, 2,. . ., 6 

Im k,,“” (a, s*) < 0 (p = @‘I,. . ., g*) 

(1.3) 

We assume that the boundary conditions for disturbances are independent of L, they are 
uniform and are separating (i.e. they link the valuesof the disturbances and their derivatives 
at the points where the conditions are specified), and they satisfy the necessary conditions 
of correctness (see /9, lo/). The conditions can be expressed as follows. For I = 0 and 

I= L we must set so and n‘p -SW boundary conditions respectively, and at each of the inner 
points Xa there should, be ATa-' -P-l i Sa boundary conditions not counting the equation t = 
X" which gives the position of the point itself. Generally speaking, the quantities X" may 
become functions of frequency o. 

After substituting the solutions of (1.11 into the boundary conditions the latter become 
a homogeneous linear system of algebraic equations with coefficients, depending on o, 

regarding C,". For z = 0 and I = L, the boundary conditions connect the values of c,* 
and of C,,,r between themselves respectively. Figure 1 shows the form of the matrix ?\ of all 
coefficients of C,“. 

For simplicity, we show the case of p = 2, 
that is when the segment !(I. t]is divided into 
three parts by the points X' and X2. Outside 
the rectangles shown by the solid lines, all 
elements are zeros. The symbols on the 1ef.t 
and the top indicate the number of rows and 
columns in the corresponding minors. 

Equating the determinant of the matrix ii 
to zero, we obtain an equation for finding the 
natural fxequencies w. 

Each term of (1.1) can be regarded as a 
wave to which we can assign a direction of 
propagation depending on the sign of Im X4,, 
which this quantity assumes for Ixn w> fif(see 
/I/). The waves which correspond to ?+=, kzu.. . . . 

Fig.1 

k.& (k&, I . . . X.$). are considered aspropagatingto 
tothe rightorleft . ForImo> 113, all waves suffer 
space attenuation in their directionofpropagation. 
At each point where they are stipulated, the 

boundary conditions should enable us to distinguish departing waves from arriving ones. The 
number of boundary conditions necessary for correctness depends on this. The vertical dashed 
lines in Fig.1 separate the columns of 2~ which correspond to c,= regarding waves propagating 
in opposite directions. 

(the plus sign is taken fcr m = 1.2,. . . So, and the minus sign for m = P-l.. . . ..I’“). 
h',o 

Clearly, 
depends on w, and also on .P and X"-' . Supposing that the latter quantities are 

Let us .ntroduce the notation 

(1.4) 

functions of o and L, andX@'-Pis of order i, we shall assume that the limit of expression 
(1.4) 

lim K",= S*,'(s) 
L-0; 

exists. 
If in the indefinite integra; in the exponent of (1.1) we choose the integration constant 

so that at the end of the segment [Xa. Xz~'l from which the corresponding wave emerges, the 
modulus of this wave is 1 C,,p I, then at the other end of this segment the wave modulus is 
IC,"iesp (- Im K,“L). The 
as follows: 

waves themselves at the respective ends of the segment are given 

We shall describe -1~ Lfi,O the exponents of space wave amplification. Obviously, in 
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expression (1.4) the first term is the main term which, as L-+00, remains finite, and the 
contribution of the second term toK,,,utends to zero. In accordance with Eqs. (1.21, for Im w > 
ni all exponents of the space amplification of waves are negative. 

Because the boundary conditions are independent of L , all elements of the matrix 3, 
which correspond to waves departing from a point where the boundary condition is stipulated, 
will be of order one, and the elements in the column corresponding to the coefficient C," for 
the arriving Wave will contain the factor cxp iLX,,a. For Irn w> .M and L-+ 00, all these 
elements tend t0 zero so that in tie limit only the elements cf the square minors remain, 
Which lie on the principle diagonal and in Fig.1 are boundedby the dashed lines. 

This means that when Im w>.v, for sufficiently large L the determinant of the matrix 
A is approximately equal to the product of the determinants of the above-mentioned minors, 

I A (a) I = IA, (w) I I A, (0) I. ( I A, (0) I (1.6) 

As long as the expression written in (1.61 remains greater in order of magnitude than 
that of the other terms, the fact that the determinant of the matrix 3 equals zero as L- x2 
results in the vanishing of at least one determinant, for example 

I A, (01 I = 0 (1.7) 

The system of boundary conditions which corresponds to this determinant links the values 
of the disturbance and their derivative between themselves at the point z = XVwhose situation 
is a function of w. Therefore the left-hand side of Eq.cl.7) does not contain a dependence 
on L. In the complex plane o, the separate points whose situation does not depend on L 
can correspond to the roots of Eq.cl.7). There may be no such points if all[il, /are constant. 

In satisfying Eq. (1.7) we can construct a solution in which C," (m = 1, . . . . s”) and C,+l 
(j = P', . . . NV+‘) are different from zero, and correspond to the waves departing from the 
point XV. As L-20, the remaining C,R for InI w> Mequai zero in the limit. For lm o ( .If. 
some other C,)fi may differ from zero as well; however the corresponding waves do not exert any 
influence on the development of turbulence or on the value of o as long as Eq.cl.6) hcidr. 

If Eq.fl.7) holds for Im w>O, an instability occurs connected with the increase 1~4 
disturbances generated by the point XC , AS is evident from (1.7), the conditions for 
such an instability t0 appear are connected with specifying the boundary conditions at this 
point. We shall call it a boundary instability. 

The other form of the eigenfunctions and the instability appears for o<.lf When the 
disregarded terms in (1.6) become comparable with +-he expression on the right-hand side 0i 
this equation. 

Consider the case where +&a determinants of ail the minors ~4, are different from zerc, 
disregarding in the complex plane of o small neighbourhoods of the points at which this 
condition is not satisfied. The: the bs*undary condition can be resolved with respect to the 
amplitudes cf the departing waves. Bere all minors .I% will become unit matrices, and outside 
these minors in the Same rows will be eieaents eact of which contains a factor e\p iLh-,,? 
determined by the number of a CGlUmn. The factor of this exponent is, with the opposite sign, 
a conversion. coefficient (i.e. the reilectiQ,n coefficient or refractive index: of the incident 
and the departing Wave. 

The determinant of the matrix 1 car be calculated if we present it as a Sum Which 
corresponds to c?ifferer,t S', of the minors' determinants compiied from the columns appearing 
in each system of rows. Each s.uch prodi-ct contains the exponential factor esp irLlim2, where 

the summation is taken 0Jer the nixtiers a and m of the columns, Which occur in One 05 the 
miners indicated, and dc net appear in the minors A,. Thus We can write symboiicall~ 

where the brackets denote expressions independent of L, representing the determinants of the 
minors after the exponential factors have been taken out of them. 

We note that in each s..rm rK,,,=in (1.6). for each a the number n"+ of terms h,=Which 
correspond to waves propagating tc the right is equal tc the number ?P_ of h',,,@ which correspond 
to waves prcrpagating to the left. This cs a consequence of the fact that if any column 
corresponding to the arriving wave is used in a minor which matches the boundary condition 
when I = Xathen this column should not be used in the minors corresponding Co the boundary 
conditions when I = XU-' and .X = XU-'. 

To simplify further argument we note that for a given system of boundary conditions, using 
numbers a and n it is possible to determine the number of a column in the matrix A, and vice 

versa. Therefore, below we shall write Cj and h'j instead of C,,," and Kma, and assume that 
the new subscript (in the absence of a superscript) takes on a multiplicity of values from one 
tQ the number of tha iast column in the matrix 5. 

If the SJIE in EC;. (1.8) becomes comparable with unity, ther, for at least one term of this 
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sum the inequality 

ImxK,=O, jE(jJ, i=l, 2,..., 2r (1.9) 
j 

will hold in the limit as Ly 3~ 
The set {ii} with respect to which the summation in (1.9) is performed is such that for 

each segment IX=, XaT’l the number of terms KJ corresponding to waves which propagate to the 
right equals that corresponding to waves propagating to the left. 

Equation (1.9) corresponds to a certain curve in the o plane. We shall assume that as 

Im o decreases, a curve which corresponds to one non-zero term in the sum (1.8) will be 
first met in a certain range of Re 0, i.e. only one sum of (1.9) will vanish, and the similar 
sums corresponding to other terms of (1.8) will remain negative. We shall use this assumption 

below, and refer to it as the assumption of non-multiplicity of curve (1.91. Then it is 

easy to analyse the arrangement of natural frequencies in the complex plane 0. Retaining 

only the main term in (1.81, we can write the equation for the natural frequencies, 

1A1=1-- (I (0) exp xiLKj (a) = 0 

where a(o) is the whole pre-exponential factor. Taking the increment 
corresponds to CO - oO where oO satisfies Eq.(1.9), and assuming that 
obtain 

1 - b (oo) u (q,) enp i ILc (0 - oJJ = 0 

(1.10) 

of the exponent, which 
0 - oO is small, we 

(1.11) 

b=espi 
2 

LK,(tio), Ibl=l, c= [ &~K&))l,_ 

The quantity a(~) cannot be expanded in a series since its derivative with respect to o 
is finite (it does not contain L). It is obvious from (1.11) that the natural frequencies are 
situated at distances of the order of 1;L from one another, and from the line (1.9). 

In the case where several lines (1.9) corresponding to several terms in (1.8) coincide, 
we may also assert that the natural frequencies will be situated at distances of the order of 
l.L in the vicinity of the merged lines. If any curves (1.9), corresponding to a non-zero 
term in (1.81, enter the top half-plane of o, we can choose the uppermost among them (they 
are all in the donain Im o<.V); in the neighbourhood of this curve there will be natural 
frequencies which cause an increase inthe disturbances, i.e. instability. Instability of 
this type is similar to global instability (see /l/J, and we refer to this as global also. It 
is connected with the amplification of waves corresponding to h',,,= which occur in Eq.(1.9), 
during their propagation, reflection and refraction. 

2. If the assumption of the non-multiplicity of curve (1.9) made in Section 1 is valid, 
then in the sum on the right-hand side of Eq.cl.8) one term becomes of the order of unity 
when Im o is reduced by the first term, and the remaining terms are much less than unity, or 
are exactly equal tc zero because the pre-exponential factor is zero. It appears in this case 
that the eigenfunction corresponding to the natural frequencies determined from (1.9), (1.11) 
presents one cyclic chain of 2r waves which change from one to another when there are 
reflections and refractions. The condition for forming this chain is that the product of the 
reflection and refraction coefficients corresponding to this chain, and the exponential factors 
determining the space changes of the amplitudes of these waves, should equal unity. 

All elements in columns of the determinant of A which do not possess an exponent with 
indices of K, in the sum (1.9) can be replaced by zeros without changing the main terms. 
Then, because A, are unit matrices we can, without altering the determinant, cross out these 
columns, and also the rows with the same numbers. The remaining matrix Dij will have 2r 
columns and 2r rows, on the principal diagonai there being unit minors Ayr remaining from d,. 
The dimension of each minor A,.’ 
[XV, xv-11 

equals the nurrber of waves which propagate in the segment 
in each direction. Outside the minors A,’ there are elements of the form 

D,i = --d,j exp iLKj, i, j = 1, 2, . . ., 2r (2.1) 

where d,, is the conversion coefficient of the i-th wave into the j-th when there is interaction 
with the corresponding boundary. Clearly, the main terms in Eq.cl.8) can be written in the 
form 

~l~=l-~DD,i/=l-~(-l)X~dkjexpi~LK, (2.2) 
k. j j 

(x is an integer). Let us consider the non-zero term of the sum on the right-hand side of 
(2.2), and perform a certain rearrangement of the factors dij constituting the sequencies of 
factors of the form d,, d,, . . . dPp, SO that the first subscript of each factor is identical 
with the second of the preceding factor. Such a group of factors, starting with the first 
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element, is constructed uniquely and is terminated, that is, it cannot be continued when the 
second subscript of the last factor becomes identical with the first subscript of the first 
factor. We shall refer to such a chain of factors as a full cycle if it contains all 3_r 
factors, and a subcycle if we have less than 2r factors. In the latter case we can choose 
one more element and build a subcycle which corresponds to it, and so on until the corresponding 
term in the sum (2.2) breaks up into the product of subcycles. 

Cyclic chains of waves with numbers identical with the subscripts of a cycle correspond 
to each cycle or subcycle. The cycle itself is the product of the coefficients of mutual 
conversion of these waves on reflection and refraction. 

It turns out that under the condition of non-multiplicity of curve (1.81, from among the 
terms under the symbol of the sum in (2.2) there is only one term different from zero; it 
corresponds to the chain of waves which are transformed into one another on reflection or 
refraction, at the point I = X'=. The term different from zero equals the product of the 
mutual conversion coefficients of the waves into the coefficients of their space amplification, 
presented by the exponents. 

To prove the above assertion we assume that all cycles whose length is less than ?r 
equal zero (because some of d,j are zeros), or they are the coefficients of the exponential 
factors with negative indices, lm:LKI<II (the assumption of induction). We shall show that 
in this case it is impossible to form more than one cycle for a given set consisting of Zr 
waves such that III! : h-, = (1 . At the same time the presence of such a cycle for Imw>O causes 
instability, and the absence of this cycle leads to all terms under the summation sign in (2.21 
being zero, i.e. to the absence of instability connected with the chosen group of waves. 

First we shall show the latter. If no full cycle exists, all the products break down 
into subcycles, and the sum of the exponents into gro'ups of terms. Since the sum of all 
exponents is zero, at least one of these groups should have a non-negative seam. Therefore, 
by the ass,umpticn cf induction, the corresponding cycle equals zerc, and therefore all terms 
under the summation sign in (2.2) equal zerc. 

Now we shall show that if the assumption of induction is valid, no more than one full 
non-zero cycle can exist. Suppose we have two different cycles. We change the order of wave 
numbering so that the first cycle corresponds to the wave sequence l-2-...-L--l, and so 
on. Then +&e seccnd cycle wiil correspond to a wave sequence which can be represented by a 
system of arrows corresponding to this sequence. For example, the sequence shown in Fig.2 is 
possible for r=3. The dashed line shows the sequence which corresponds to the first cycle. 

Fig. 2 

Since all &i which correspond to both cycles should be non-zero, using these d,:-, we 
can form subcycles different from zero. These subcycles correspond to the cyclic sequences 
which can be formed using the arrows corresponding to both cycles. 

We can establish a correspondence between each arrow 0, + the second cycle which does not 

coincide with the arrow of the first cycle, and the szubcycle. For example, the subcycle 

consisting of four waves 2, 5, 6, 1, corresponds to the arrow 2-j. All transitions with 

the exception of Z--5, are taken from tne first chain given. Thus, the waves whose numbers 

are situated under the arrow 3-i do net enter the subcyclewhichcorresponds to an arrow 

pointing to the right. Exactly as above, we can establish a correspondence between an arrow 

directed to the left and the cycle of waves whose numbers lie 
ends. 

above-the arrow including the 

Now we shall show that if we sum the partial sums of the 
to all subcycies which can be formed by the method discussed, 
certain integer n multiplied by the complete system of all 2r 
zero, 

indices S,= Z K, corresponding 
we obtain a quantity equal to a 
indices, which by (1.9) equals 

(2.31 

To prove this assertion we note that in Fig. 2 exactly one arrow, which corresponds to 
the second cycle, fits each wave number. Therefore we can replace in Eq.(2.3), without 
upsetting it, the sums S. corresponding to the subcycles by the sums S,' of all indices of 
the subcycle with the exception of the index which corresponds to the end of an arrow. 

We note alsc that, as the sum cf all 2r indices is zero, the sum s,', which corresponds 

to a certain arrow indicating tc the right in Fig. 2 is equal, with opposite sign, to the sum 
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of indices of numbers lying under the arrow including the arrow's end (but without the index 
corresponding to the initial point of the arrow). FrOLh‘this we can infer that the partial 
sum XS,, which corresponds to the continuous sequence of arrows with the first one starting 
at 1, consists of the terms iii taken with the opposite sign , and corresponding to the numbers 
lying not more to the right than the end of the last arrow without the term Ki, . Consequently, 
the complete sum of all S,', and therefore of all S+ appears to be zero. For this reason 
at least one partial sum of S, is non-negative. 

It follows from the assumption of induction that the subcycle which corresponds to a 
partial non-negative sum of Si should be equal to zero. Consequently, if at least one 
element d,j which enters one complete cycle is zero, this same cycle itself becomes zero. 

1. 
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